
Soft Comput manuscript No.
(will be inserted by the editor)

A simple model to exploit reliable algorithms in cloud
federations

A. J. Rubio-Montero · M. A.
Rodŕıguez-Pascual · R. Mayo-Garćıa

Received: date / Accepted: date

Abstract Exploiting resources belonging to multiple cloud providers in an effi-
cient way is still an open issue for distributed computing. Scheduling algorithms
based on heuristic, probabilistic, queue theory, or complex soft computing methods
are suitable to tackle the heterogeneity and dynamism present in cloud federations.
Nevertheless, the available brokering tools are focused on the deployment of ser-
vices on-demand. The systems able to accomplish high throughput calculations,
such as the pilot-job systems, do not support the inclusion of these algorithms due
to their lack of adaptability. The recently implementation of cloud drivers for the
GWpilot framework allows developers to profit from its flexibility, compatibility
and scheduling features. Moreover, the framework allows the personalised charac-
terisation of cloud resources that those algorithms require, overcoming their lack
of trustworthiness in the information provided by the cloud services. In this work,
a simple model together with a methodology to couple scheduling software with
GWpilot is presented. To demonstrate the suitability of the approach, a legacy
self-scheduler specialised on reliable executions in dynamic environments has been
stacked and tested on the EGI FedCloud infrastructure with the Nagano legacy
application.

Keywords Distributed Computing · pilot jobs · modelling · IaaS

1 Introduction

IaaS cloud providers are heterogeneous and their real availability dynamically
changes through the time (Foster et al, 2008). Thus, the allocation of virtual
machines (VMs) across multiple providers is a NP-complete problem(Garey and
Johnson, 1979) that can be tackled with the sub-optimal approaches that soft
computing or the operative research (Pinedo, 2005) can provide. For example,
meta-heuristics (Gómez-Iglesias et al, 2010), evolutionary algorithms (Nesmach-
now et al, 2010), or fuzzy logic (Saleh, 2013) have demonstrated their suitability for

A. J. Rubio-Montero, M. A. Rodŕıguez-Pascual, R. Mayo-Garćıa .
CIEMAT. Av. Complutense 40, 28040. Madrid, Spain.
E-mail: antonio.rubio@ciemat.es



2 A. J. Rubio-Montero et al.

improving calculations on large distributed environments such as grids. Moreover,
cloud federations are more dynamic and complex than grids because more para-
meters are taken into account for scheduling(Aceto et al, 2013; Sheikhalishahi et al,
2015), although on the other side, the benefits that virtualisation provides can be
higher. In this sense, some brokers, such as one proposed by Anastasi et al (2014),
take advantage of specific monitoring to reduce the complexity of VM deploy-
ments to improve the quality of service through the time. Nevertheless, current
cloud brokering mechanisms are focused on obtaining as many computational re-
sources as possible with a limited (computational and/or economic) cost (Tordsson
et al, 2012; Yangui et al, 2014) and with no support to legacy high throughput
computing (HTC) applications and to those kinds of algorithms. Moreover, the
information systems (IS) in cloud federations do not provide an accurate descrip-
tion of the status of cloud providers as happened with grids. Furthermore, as in
grid federations, the resources fail. An analysis on the source of failures on cloud
environments and the most common ways of addressing them is available in (Zhani
and Boutaba, 2015). Besides, it is clear that a developer of any adaptive algorithm
should take account of the localisation and performance of the resources to reduce
the final makespan of the calculations.

In this sense, the makespan of any distributed application depends on the
turnaround time of every task. Turnaround is specially influenced by overheads
when short-duration tasks are scheduled. In contrast, long-duration tasks suffer
from more failures that waste computational time. To calculate the turnaround,
developers should estimate the time required by stage-in and -out operations, the
performance offered, the failures, and the overheads related of providers and mid-
dleware. For this purpose, it is needed a correct characterisation of the providers,
which cannot be possible without the appropriation and monitoring that pilot-
job technique could offer. Nevertheless, current pilot systems neither support the
customisation of monitoring nor report their own generated overheads.

This drawback is overcome with GWpilot. This framework now supports cloud
resources (Rubio-Montero et al, 2015c), preserving all its demonstrated features
(Rubio-Montero et al, 2015b); among them, it allows monitoring personalised as-
pects of the computation and it performs a true provisioning among multiple
cloud providers on-demand. Furthermore, the capacity of completely characterize
its added overhead is a key feature to formulate a trustworthy model for task
turnaround. This model, together with the GWpilot support for task scheduling,
allows stacking specialised scheduling tools to the framework, which can properly
now run on both grid and cloud infrastructures.

In this sense, dynamic self-schedulers are the most feasible tools for this pur-
pose because they are able to adapt some specific calculation according to the
estimation of the infrastructure status, but following their own criteria and disreg-
arding the information from the IS when needed. In this work, a self-scheduling
framework (Rodŕıguez-Pascual et al, 2013) devoted to improve the reliability of
Monte Carlo (MC) codes has been stacked. Although the framework has previously
demonstrated its standalone performance on grids (Rubio-Montero et al, 2015d),
it will take advantage of the proper characterisation of clouds offered by GWpilot.
The self-scheduling algorithm requires knowing the theoretical performance of the
infrastructure for computing a concrete application before assigning a number of
samples to be computed by a certain resource. This performance is calculated fol-
lowing a mathematical model based on turnaround, which is continuously fitted



A simple model to exploit reliable algorithms in cloud federations 3

with the benchmarking information retrieved from ending tasks. Therefore, this
example can be used as a guide for the future stacking of algorithms based on
turnaround and reliability as the ones mentioned in Section 2.3.

Summarizing, a simplified task turnaround model that takes into account the
underlying overheads is presented in this work. Additionally, a methodology to
incorporate external scheduling into GWpilot is presented. The suitability of the
presented approach is demonstrated through the statistical analysis of the per-
formed executions of a real MC application on the in-production FedCloud infra-
structure, comparing the results of the stacked self-scheduler to the ones achieved
without using it.

2 The persistent characterisation issue

2.1 Information systems in federations

Client systems of cloud infrastructures highly rely on the information provided by
geographically distributed sites. By doing so, users, developers and administrators
are aware of when, where and how to request virtual machines. Such information
is shown by the information systems, locally placed as one of the several compon-
ents that form a cloud site, the data of which should be compiled at top-level for
general queries. Thus, the standardisation of these services are one of the found-
ations of a cloud federation (Foster et al, 2008; Moreno-Vozmediano et al, 2012)
as opposite to multi-cloud approaches (Grozev and Buyya, 2014), focused on the
interoperation through different protocols. In principle, any system or user want-
ing to launch VMs on a particular cloud federation will distribute the requests
according to the information that the main IS compiles regarding the available re-
sources. Unfortunately, sometimes such information is not centralised in any way,
and even it is usually not accurate. The standardised interfaces for monitoring
are based on OCCI and on LDAP, following the GLUE schema (Andreozzi et al,
2009). Currently, the former is only deployed as a local service at the cloud pro-
vider. The latter is both local as well as a shared service in federations such as
FedCloud1. However, the characterisation of resources performed by these services
is incomplete and defective. It prevents properly estimating task turnaround and
consequently, a resilient and efficient VM deployment among cloud providers in a
federation.

2.2 Characterisation for scheduling

Task turnaround is the basic model that supports any of the scheduling algorithms
suitable for distributing calculations. In this sense, a widely accepted and simplified
definition of turnaround (Mościcki, 2011; Montero et al, 2006) follows the equation:

T = Tsched + Txfer + Texec (1)

where:

1 https://www.egi.eu/infrastructure/cloud/



4 A. J. Rubio-Montero et al.

– Texec is the effective execution time of the application in the remote resource.
It depends on the hardware, software, overload and reliability offered by the
cloud provider for the concrete application, as well as on the BoT size.

– Txfer stands for the time wasted in transferring inputs, outputs and software. It
depends on the protocols used and the bandwidth of the remote cloud provider,
as well as on the amount of data to transfer.

– Tsched comprises the time wasted in Job Scheduling processes. It depends on
the infrastructure overload, the allowed utilisation (quotas) and the middleware
implementation.

Consequently, the suitability and preference for any cloud provider depends on
its real availability for a type of calculation at certain time, which is compound
by:

(a) the volume of the hardware resources and the software actually offered: the
number of cores, memory, storage, bandwidth, data, libraries, licenses, etc., as
well as the VM images available, i.e. the resource tpl and the os tpl templates
(according to the OCCI specification) and the instances allowed;

(b) the effective performance of these resources for the application, i.e. the profile
of the application on that hardware, as well as the potential associated costs
and the granted percentage utilisation (as in virtualized systems hardware is
usually shared).

(c) the reliability of the application, the middleware, and the provider itself (that
depends on the configuration, maintenance, security, network supplier, etc.).

Nevertheless, as the date of publishing this work, the information belonging to
point (a) is only partially available at the IS deployed in federations. The rest of
points are practically discarded. In particular, the GLUE scheme implemented in
top-BDIIs currently does not allow knowing (among others aspects):

1. the capacity and filling rate of a cloud provider;
2. the quotas established in cloud providers for a user belonging to certain VO;
3. the exact hardware or reliable benchmarks of every virtualisation hosts;
4. statistics about the QoS or the SLA achievement for every provider.

It is noteworthy to mention that GLUE is extensible and currently counts on
tags that declare some of the aforementioned characteristics. Nevertheless, the
information provided is usually incomplete, not updated and erroneous in many
cases. Additionally, way more aspects should be taken into account in cloud envir-
onments (Aceto et al, 2013) than in grids. Nevertheless, the grid experience with
GLUE shows that many characterisation aspects will never be implemented. Ob-
viously, a scheduling system working with cloud providers can follow a multi-cloud
approach (Grozev and Buyya, 2014), monitoring every provider through its OCCI
interface. Although extensions of the specification have been proposed (Mohamed
et al, 2015), the OCCI v1.1 specification does not even provide the aforementioned
information.

Moreover, the accounting and monitoring tools deployed in cloud federations
do not aggregate their statistics to the IS, and also cannot be directly interfaced
because only visual tools are available (Zanikolas and Sakellariou, 2005). In this
sense, standardisation advances are carrying on (Ciuffoletti, 2014), but there are
not implementations to evaluate their suitability.



A simple model to exploit reliable algorithms in cloud federations 5

Therefore, the deployment of any adaptive scheduling algorithm is hindered by
this lack of characterisation required to estimate the task turnaround. Consider-
ing the aforementioned issues, the possibilities are really limited for the systems
following early-binding approaches. In contrast, late-binding techniques can solve
many of the commented characterisation problems and they can provide more
advantages, as will be explained in Subsection 2.4.

2.3 Related approaches

Modelling cloud infrastructures according to an optimum turnaround represents a
clear step forward towards obtaining an efficient calculation. However, dynamism
of resources, specially unexpected failures and slowdowns, implies rely on adaptive
techniques to reach a resilient calculation. Although they can be combined, both
orientations are usually differenced by authors:

Scheduling based on turnaround. Despite the lack of characterisation tools, some
work has been done on this topic. For example, techniques have been implemented
to obtain a better task allocation (Panda et al, 2015) based on turnaround in
multi-cloud environments. The Divisible Load Theory has been used(Abdullah and
Othman, 2013) as well as other methodologies such as classical replication of tasks
(Sajid and Razaa, 2015), workflow scheduling (Smanchat and Viriyapant, 2015)
or even simple AVL-trees (Chiu et al, 2014). Making the most of soft computing,
particle swarm optimization (Xu et al, 2015), bee colonies (Babu and Venkata,
2013) and genetic algorithms (Wang et al, 2016; Tao et al, 2014) are used, but
all those focus on the placement of VMs in single IaaS providers. Unlike last
approaches, game theory (Shie et al, 2014) can also be applied to federations.

Scheduling based on autonomic computing. The first aspect to consider is to im-
prove the fault tolerance of the execution processes. This can be done by coping
failure-prone environments with a multi-hybrid (Moon and Youn, 2015) and auto-
nomic job scheduling (Bala and Chana, 2015). Robustness is provided by task
replication based on heuristics for the first approach, and by migrating the VM
automatically in case of task failure occurrences due to the over-utilization of
resources in the last one. Additionally, taking into account failures (Zhani and
Boutaba, 2015) is useful for the autonomous reconfiguration of sites (Mohamed
et al, 2015). Moreover, monitoring performance benchmarks, SLA and failures can
be combined (Lu et al, 2016). A step forward can be performed if QoS, VM mi-
grations and budgets are balanced (Lucas-Simarro et al, 2015) to autonomously
deploy a virtualised HTC cluster among commercial providers. Related to the work
presented in this paper, a model to evaluate the reliability of cloud infrastructures
and maximize the resource usage and its behaviour executing a non-sequential
MC simulation can be found in (Snyder et al, 2015), but it does not consider the
performance requirements of particular applications.

As a closing remark, it is important to notice that most of these mentioned
solutions are only tested or analysed in simulators, or make use of single cloud



6 A. J. Rubio-Montero et al.

providers (such as AWS2) without performing a distribution of tasks among sev-
eral ones, or even they do not interface with the standardised services required
in federations, making difficult to determine its usefulness on real environments.
Moreover, most of autonomic scheduling does not take account of turnaround. It
is very difficult for developers to improve by their own the execution of concrete
HTC applications if a completely autonomous system is used. Tasks are not con-
solidated services and they cannot estimate a priori how long they will last (or
how many they will expend) in a certain provider because the offered hardware is
different.

Unlike previous solutions, the approach described in this work is not only de-
signed to maximise the VM usage and deployment among cloud providers, but
to support the scheduling algorithms that developers implement for their applic-
ations. This is possible by decoupling the turnaround model from the IaaS provi-
sioning, but supporting a guided provisioning and standardised interfaces. Thus,
the performance on real time can be estimated for a concrete application and used
by third-party schedulers to improve the reliability and reduce the final makespan
of the calculation, as will be demonstrated through next sections.

2.4 Resource Provisioning with pilot jobs

Pilot systems have been extensively used through years to increase the reliabil-
ity and throughput in grid environments. On the other hand, the provisioning
mechanisms currently available in IaaS clouds are focused on setting up VMs for
the consolidation of services. However, they do not prevent running pilot jobs
as temporal services (Mhashilkar et al, 2014; Luckow et al, 2015; Graciani et al,
2011; Kovács et al, 2015). Thus, many satellite programs (pilots) running inside
VMs branch out to monitor a set of computational user tasks that are continu-
ously assigned by these frameworks following the master-slave scheme. The main
motivations for establishing this network overlay within a cloud infrastructure are:

– to effectively characterise the deployed VMs by sending their real properties
and current status to the master;

– to increase the robustness of the calculations;
– to enable compatibility with other legacy systems (such as grid services) and

applications by checking and creating special configurations; and
– to reduce cloud complexity (especially in multi-cloud approaches) by directly

using assigned resources and monitoring the user tasks.

In general, the pilot systems tested in real clouds have accomplished the last
two items mentioned above. Nevertheless they do not properly deal with the first
one and only partially with the second one. To improve the reliability of the cal-
culations, the pilot frameworks must provide mechanisms that allow the inclusion
of specialised scheduling algorithms, specifically devoted to these executions. For
this purpose, the pilot system must not only support standardised APIs to code
the algorithms, but also allow the personalised characterisation of provisioned re-
sources as well as provide a reliable model to adapt them to the pilot behaviour. In
this sense, the mentioned systems lack compatibility or adaptability. Furthermore,

2 http://aws.amazon.com



A simple model to exploit reliable algorithms in cloud federations 7

the performance of most of them is unpredictable, which prevents coupling them
with legacy self-schedulers, for example. For this reason, few abstraction models
of pilot jobs have been proposed (Glatard and Camarasu-Pop, 2011; Luckow et al,
2012; Mościcki et al, 2011) that can be used for this purpose (Korkhov et al, 2009;
Camarasu-Pop et al, 2013). These issues are properly tackled in this work.

3 Modelling task turnaroud with GWpilot

GWpilot (Rubio-Montero et al, 2015b) is a general-purpose pilot job framework
embedded in the GridWay meta-scheduler (Huedo et al, 2007). The performance,
adaptability and flexibility of the system have been demonstrated in grids, but
its compatibility with cloud providers and its capacity of supporting third-party
schedulers have been presented as future features.

Recently, the cloud support has been achieved (Rubio-Montero et al, 2015c).
.For this purpose it was necessary to implement two new Information and Execu-
tion drivers able to manage cloud interfaces. This section is focused on explaining
the capabilities related to cloud characterisation and modelling for scheduling, and
it only compiles a general description of GWpilot and the cloud drivers in Sub-
section 3.1. For an extensive explanation of the design, behaviour and operation
with the framework, reader should consult the references (Rubio-Montero et al,
2015c,b,a). In any case, the data extracted by the Information Driver from ISs of
the infrastructures are the initial characterisation for every cloud provider. This
information is used to establish the first filter based on the availability of hardware
and virtual images, which is consequently used for virtual machine provisioning.
Thus, the aspects needed to understand the scheduling support provided, are in-
cluded in this section.

To support external schedulers the framework must provide a suitable model
and a methodology to adapt a wide range of scheduling algorithms. According
to the related work, this model should be based on task turnaround, while the
mechanism of adaptation should allow incorporating personalised characterisation
of resources without modifying legacy codes of the third party tools and applic-
ations. These two items, together with its practical demonstration, are the main
contribution of this work. For this reason they are described in different Subsec-
tions 3.2 and 3.3.

3.1 The framework in cloud federations

The GWpilot framework counts on two main modules in addition to the pilots: the
GWpilot Server and the Factory. The implementation of pilots is lightweight and
without library dependencies, i.e. they can run on any kind of Linux OS. Thus, no
especial configurations are needed to deploy the pilot overlay on cloud federations

According to the number and requirements of the tasks created by any ap-
plication or third-party scheduler, the Factory automatically builds the necessary
pilot jobs that will be executed in VMs. The description of these tasks can con-
tain constraints to certain VM image identifiers related to cloud marketplaces, for
example the appdb.egi.eu code for FedCloud images. Factory interprets them and
includes those related ones into the pilot requirements.



8 A. J. Rubio-Montero et al.

The GridWay Scheduler will use the information dynamically updated by the
GWcloud Information driver to select the most suitable cloud provider every time
that will execute a task. For this purpose, the Scheduler takes account of the re-
quirements set in the description of the pilot jobs, in a way similar to the one the
described in (Rubio-Montero et al, 2015a). Then, the management of the VM cre-
ation and the pilot job execution are delegated to the GWcloud Execution driver.
This module performs all the actions needed to run the pilotjob in a contextu-
alisation script, interfacing with providers through the OCCI. Consequently, the
pilots executed will enrol to GWpilot Server and the first level of scheduling (the
resource provisioning) is successfully completed.

Therefore, users can run their legacy codes on GridWay as usual. The tasks
created by these applications are also scheduled among the enrolled pilots. This
constitutes the second level of scheduling (the task scheduling). Potentially, the
combination of levels allows advanced scheduling techniques (Rubio-Montero et al,
2015b), although this work will be focused on allowing staking another scheduling
layer on the top of the framework. To achieve this feature, the characterisation
takes uppermost importance.

There are four characterisation mechanisms available in the framework. The
default monitoring performed by pilots, the personal customisation based on char-
acterisation tasks, the accounting performed by GridWay, and the information
retrieved from cloud ISs. As commented, the latter is not accurate and is over-
come by the other three, as it is explained with the model. In any case, this can
be used as a first guide for scheduling and provisioning, and for this reason is
described below. On the other hand, the customisation of tasks and the account-
ing are features used in the adaptation of the third-party scheduler presented in
Section 4.

The GWcloud Information Driver

This new driver looks up for cloud providers in top BDIIs of one or multiple fed-
erations. Currently, the driver supports the EGI FedCloud, but it can be modified
to directly use OCCI or AWS interfaces to work on a multi-cloud environment.
Subsequently, the driver filters the information to dynamically notify GridWay
about the characteristics of providers in which the user is authorised. Every pro-
vider found is included as an independent resource in the Host Pool. Thus, the
information can be consulted by the user through the GridWay commands and it
is shown as:

– The URI contact endpoint, the protocol, hypervisor and VIM releases, the
maximum number of available cores, etc.

– Every OS template name (the os tpl) and their appdb.egi.eu image identifier
are compiled in a list of pairs and included as new tags.

– Every resource template (resource tpl) is shown as a different queue, with its
own characterisation: number of cores, memory, etc.

Thus, any developer can use these searches to constraint the matches to certain
characteristics published by providers.



A simple model to exploit reliable algorithms in cloud federations 9

3.2 Simple turnaround model

The real turnaround time of each completed task is defined as the time differ-
ence between the moment when the task is queued in the framework for being
dispatched (i.e. the application or the third-party scheduling tool make the sub-
mission) and the moment when the system notifies that it is completed. This value
represents the CPU time consumed by the application when it is executed in the
remote pilot plus the transfer times and the overhead introduced by the underlying
middleware in its own scheduling.

Unlike other pilot systems used in cloud, related middleware overheads can
be known a priori with the GWpilot configuration. Thus, when no failures are
produced and enough amounts of pilots are available, the idealised turnaround (τ)
is:

T = Tsched + Txfer + Texec ' tsi/2 + tpi + tx + te = τ (2)

te and tx maintain the same significance than Texec and Txfer in Equation 1.
Texec depends on the power of the resource selected, while Txfer principally de-
pends on the network and the amount of data transferred. Thus te as well as tx
should be estimated by a self-scheduler, but now GWpilot provides the character-
isation of every pilot for this purpose. This is, the bandwidth, latency and power
are published for every pilot. In addition, the tools needed to publish any special-
ised benchmarking of these or other performance aspects (for example, the disk
throughput) are available in GWpilot.

On the other hand, the Tsched is the overhead related to the framework and task
scheduling mechanisms. It is split into two types of process (tsi+tpi), with different
modelling behaviour. First, tpi is the overhead related to pilot notifications and the
capacity of the GWpilot Server to process them. When no failures or network cuts
are registered, tpi coincides with the pilot interval set in the GWpilot configuration.

tsi/2 stands for the time needed to obtain a suitable pilot to execute the task.
GridWay Scheduler will prioritise some tasks over others and then will dispatches
these tasks to pilots that accomplish their requirements. When tasks have identical
requirements and enough amount of pilots are already appropriated by the pilot
system, tsi/2 only depends on the elapsed time between schedules set in the GW-
pilot configuration (the half of SCHEDULING INTERV AL).

3.3 Methodology to incorporate third-party schedulers

With the model presented and the GWpilot features, it is possible to easily separate
the characterisation, the application-level scheduling, the task scheduling, and the
provisioning, while maintaining the control over the pilot submission and removing
the penalties originated by self-made estimations. However, it could be of interest
for the developer to keep some of his implemented procedures to better fit the
needs of his application. Thus, a developer that plans to adapt any third-party
scheduler to GWpilot should follow the following steps:

1. To identify the algorithm requirements (pre-conditions) that are related to
characterisation, i.e. what qualifiers are necessary and what type of resources
should be prioritised.



10 A. J. Rubio-Montero et al.

2. To check if GWpilot already offers procedures to accomplish these requirements
and to value if they should substitute the possible legacy ones by:
– Making a simple procedure to submit characterisation or customisation

tasks to pilots whenever they were newly enrolled to the framework.
– Configuring the GWpilot Factory or modifying the legacy mechanism to

submit pilot jobs.
– Removing the compilation of statistical data from tasks (or even pilots) if

the accounting performed by the framework is enough.
3. To purge the third-party code from useless procedures that have been achieved

by the previous techniques and reformulate the proposed algorithm if needed.
4. To adjust the algorithm to establish equilibrium between spent time and profit-

able execution time taking into account the turnaround model and accordingly
set the GWpilot configuration.

Obviously, not all these items must be completed to obtain a useful adaptation.
Many developers do not like to modify legacy codes to take advantage of pilots.
However, to show the simplicity of the adaptation although it is the theoretically
most expensive approach, as well as to profit from all the GWpilot features, the
methodology is completely followed in this work.

4 Resilient executions of MC codes

To demonstrate how the proposed model and methodologies are suitable for incor-
porating external scheduling algorithms, even for those already included in legacy
software, a good example should be the adaptation of a self-scheduler to GWpilot.
For this purpose, the Montera framework developed by Rodŕıguez-Pascual et al
(2013) has been used. Therefore, the Dynamic Trapezoid Self-Scheduling(DyTSS)
algorithm will be utilised as a proof of concept to show how a loop-scheduler can
be adapted to GWpilot.

It could seem that as the framework relies on GridWay, the procedure presented
is only bounded to frameworks that use this platform (Dı́az et al, 2009; Tomás
et al, 2012). However, the binding with GridWay is mainly based on DRMAA
and subsequently, other applications implemented with standards (DRMAA and
OGSA-BES) should be straightforwardly adapted too. Moreover, other frameworks
that use different grid schedulers or batch managers can be also easily adapted
by substituting some commands, because getting information about resources and
managing jobs is very simple with GWpilot.

4.1 Adaptive sample-based algorithm

DyTSS (Rodŕıguez-Pascual et al, 2013) is a loop-based algorithm (Dı́az et al, 2009)
that differentiates from other approaches such as TSS (Tzen and Ni, 1993) or GTSS
(Herrera, 2009) in its dynamic nature and in its focus on managing MC codes. The
enhanced version of DyTSS used in this work is described in Algorithm 1. It shows
the pseudo-code resultant of observing more properly the mathematical basis and
purging the functions without relationship to the algorithm itself. Moreover, the
main advance is the inclusion of the minimum (L) and the maximum (M) chunk-
size limits as external configuration parameters. With them, users can adjust better



A simple model to exploit reliable algorithms in cloud federations 11

its behaviour on the network overlay created by pilot jobs by limiting the overhead
of shorter tasks and the execution time of longer ones.

Dynamic algorithms usually need to continuously calculate the suitable exe-
cution time in every provider. The objective is to fit the workload partitioning
to the estimated status of the infrastructure. For this reason it is usually neces-
sary to benchmark the infrastructure performance and to profile the application.
These actions are also necessary when pilot jobs are used. In this sense, some
general-purpose algorithms (Korkhov et al, 2009), and even ones devoted to MC
(Camarasu-Pop et al, 2013), are based on calculating the minimal real execution
time in every resource to reduce the overhead percentage of every task to a certain
threshold.

With DyTSS the approach is completely different as L and M are preset by the
user. These values can be previously calculated taking into account the mentioned
overheads, but the algorithm will never modify those values. The approach of
DyTSS is to reduce overheads by adjusting the first executions as much as possible
to M , but straighten turnarounds. Then, it progressively decrease the chunk size
to L, overcoming the influence of failed jobs in the makespan. The result is a
improved and resilient calculation with reduced makespan.

The algorithm calculates the number of samples (sj) to submit to every avail-
able resource (rj) belonging to a characterised infrastructure (R). For this pur-
pose, the current power of the infrastructure is estimated by linear regression of
the ordered performances from (rj , sj) pairs. The ordinate in the origin (n1/2) of
the obtained straight-line corresponds to the half-performance of the infrastruc-
ture for this distribution of tasks (Montero et al, 2006). This value determines
the variable component (F ) of the maximum chunk size (F + L <= M) for the
current loop stage. As commented, L and M are constant, and consequently the
number of samples is always within the interval (L · · ·M), but the turnaround
will be different for every match (rj , sj). Thus, the procedure is repeated until no
improvement is obtained for the sample distribution.

Note that (F ) should decrease with the number of samples (S) as the simula-
tion is being accomplished (end(sj)) if not a new more powerful (new(r)) resource
is discovered. This assures cutting final execution tail due to remaining and stan-
dalone tasks.

4.2 Characterisation and adaptation

Montera supports by default two characterisation modes: it estimates the available
number, power and bandwidth of the slots offered by the infrastructure at a certain
time, as well as the computational needs of the application. The main difference
among other frameworks is how those parameters are estimated. In particular, the
system:

– Benchmarks every provider by means of submitting a testing job that measures
the CPU performance in manageable units (for example, whetstones (Curnow
and Wichmann, 1976)) as well as the bandwidth.

– Then, averages the aforementioned benchmarks with every real execution of
the real application, taking also into account the time needed for staging its
input and output files.



12 A. J. Rubio-Montero et al.

Algorithm 1: DyTSS.

Require: R ≡ [rmax...rmin] (list of estimated available resources)
Require: L (minimum sample-chunk)
Require: M (maximum sample-chunk)
Require: S (number of required samples)
task list← {∅}
for rj ∈ R do

task list← task list ∪ {(rj , L)}
free res list← R
while S > 0 do

for i = 1→ 100 do
old task list← task list
n1/2 ← linear fit(old task list)
F ← S/4 · n1/2

task list← {∅}
for rj ∈ R do

frel ← T (rmax, L)/T (rj , L)
s← minimum(M,F · frel + L)
task list← task list + {(rj , s)}

if task list ≡ old task list then break

for rj ∈ free res list do
submit((rj , sj) ∈ task list)

free res list← {∅}
for end(sj), (rj , sj) ∈ task list do

if OK(sj) then
task list← task list− {(rj , sj)}
S ← S − {sj}
free res list← free res list ∪ {rj}

for new(r) do
if T (rmin) > T (r) then

R← R ∪ {r}
free res list← free res list ∪ {r}

– Estimates the slot availability and reliability of every provider averaging the
number of failed attempts and the number of failed tasks.

However, the characterisation mechanisms implemented in Montera are ori-
ented to submit jobs directly to grid sites. For this purpose, replication is used for
testing the slot availability, and an exhaustive accounting is performed inspecting
job outputs.

However, these techniques are unnecessary in the network overlay created over
the cloud resources. GWpilot features can be fully configured to satisfy all pro-
visioning matters without replication, as well as characterisation tasks can be
submitted to pilots and the accounting of GridWay can be finally used, avoiding
the necessity of compiling statistics. In this sense, the benefits of continuously
testing the providers can now be achieved by the correct configuration of GWpilot
Factory and the banning feature, as has been explained in (Rubio-Montero et al,
2015c).

It is noteworthy to mention that not only the allowed number of VMs in every
cloud provider is variable, even the hardware provided by each resource is also so
because it can be composed by different kinds of nodes and the provider can be
overbooked. Therefore, the basis of the characterisation should rely on the same



A simple model to exploit reliable algorithms in cloud federations 13

mathematical basis used for grid, but adapted to the turnaround model proposed
for pilot jobs.

4.2.1 Application profiling and resource benchmarking

Pilots provisioned are seen by Montera as suitable resources. However, these pilots
have to be characterised before being profited. On the other hand, the applica-
tion has to be profiled according to the benchmarks used for pilots to enable the
matchmaking among them.

Therefore, the operation with a new MC code starts analysing its computa-
tional needs. For this purpose, it is executed on a set of pilots progressively growing
the number of samples, so its requirements in terms of CPU consumption and data
movement can be profiled. The obtained parameters are the Constant effort, Ceff

(the effort necessary to execute the constant part of the application, like compiling
code, input pre-processing, output post-processing, etc.), and the Sample effort,
Seff (the effort necessary to simulate a single sample). These efforts can be meas-
ured in the performance units provided by any general-purpose CPU benchmark
tool to increase the suitability of the solution for a wide range of computational
requirements. In this work, Whetstone (Curnow and Wichmann, 1976) has been
selected.

To benchmark the pilot, a characterisation task is submitted. Unlike the pro-
filing tasks, the interest is now focused on its performance (P ) and its bandwidth
(BW ). To obtain the information, the benchmark tool is executed again and a big
file is copied. This analysis is always performed when a new pilot is detected and
the results are published as an additional tag for this pilot. To preserve the accur-
ateness of the monitoring, the values published are updated as any conventional
task that belongs to the real calculation ends, as will be explained below.

4.2.2 New turnaround estimation

Using the Equation 2, the aforementioned parameters are used to estimate the
turnaround time (T ) of executing an arbitrary number of simulations (s) of a given
application on any remote resource (rj ∈ R), the calculation of which requires and
generates certain data (D) to transfer:

T (rj , s) ' τ(pj , s) =

= tsi/2 + tpi +
D

BWpj

+
Ceff + s · Seff

Ppj

(3)

However, this model loses precision and is unreliable if benchmarking paramet-
ers are not updated during the execution of an application, as they vary through
the time. To avoid this, every successful execution of a MC task is analysed to
re-calculate the parameters, so knowledge about the infrastructure is enhanced
in real time with minimum computational effort. Moreover, DyTSS can receive
now the exact benchmark of every slot effectively appropriated with the GWpilot
framework. This increases the efficiency of the algorithm. Additionally, the over-
heads introduced are reduced because DyTSS has to wait neither for benchmarks,
nor for storing statistical data.



14 A. J. Rubio-Montero et al.

Figure 1 Overhead with respect to expected turnaround (Equation 3) according to the num-
ber of Nagano’s samples per task and the GWpilot configuration (tsi/2 = 5 s, tpi = 30 s).
An idealised infrastructure with D/BWpj = 2 s and without failures is considered, but cloud
providers offer resources with benchmarked power (P ) from 1000 to 2000 whetstones (w).

Therefore, as the accurateness of the model is preserved through the changes
in the availability of resources, it can be used by the adaptive algorithm to de-
termine the global performance of the virtual infrastructure provisioned and to
consequently adapt the number of samples (s) to submit and where to do it.

5 Experiments

The objective is to evaluate the effectiveness of the model to incorporate advanced
scheduling algorithms into the late-binding approach offered by GWpilot. For this
purpose, the execution of a MC application is performed with and without stacking
Montera to the GWpilot/GWcloud framework in the EGI FedCloud infrastructure.

5.1 Proposed tests

Nagano (Vélez., 2011) is a MC application based on the experiments of Nagano
et al (2003, 2004). The code is devoted to simulate fluorescence emissions and
the energy deposited by electrons inside an observation volume of the desired
proportions. Thus, Nagano lies on the area of astroparticle physics, helping on
the research of the origin and propagation of ultra-high-energy cosmic rays. The
calculation for a single electron takes only a fraction of second, but for a real world
use case, a complete simulation comprises several millions of electrons, for example



A simple model to exploit reliable algorithms in cloud federations 15

2 · 107. In this sense, its execution can be characterised following the profiling
explained in subsection 4.2, resulting in Ceff = 375.07 w and Seff = 156.26
w, being w whetstone units. The inputs and the application itself take 500 KB
and output files require only a few KB, then the stage-in and -out process is
really ballasted by the negotiation of the connection, lasting less than 2 seconds
in current research or business networks.

Figure 1 shows the estimation of the overhead evolution for a task when it
is executed on certain provisioned pilot, using the turnaround model proposed in
this work and taking into account that resources offered by current cloud providers
usually ranges from 1,000 w to 2,000w. Each number of samples used coincides with
the ones selected for the proposed tests. These are the limits L and M for DyTSS
and the fixed number of samples E for an equal-sample-size distribution. As can
be seen, these values are not arbitrary chosen. The overheads of the calculation
based on equal-sized tasks are theoretically bounded into a 4-7%, according to the
turnaround model. In addition, the calculation should be few influenced by the
failures of tasks due to their short duration (between 10 and 20 minutes). On the
other hand, DyTSS has to reduce the makespan by dealing with very short and
long tasks, i.e. achieving equilibrium among overheads, failures and turnaround to
increase the production of samples.

Currently, the real availability of resources is very limited in FedCloud. Al-
though a virtual image widely deployed in providers were used (Rubio-Montero
et al, 2015c), the maximum number of VMs provisioned varies from just a few
tens to one hundred fifty, distributed among about seven reliable providers. This
issue constraints the tests performed and the comparison to the results obtained
in previous works (Rubio-Montero et al, 2015d) following the early-binding ap-
proach. Consequently, two types of tests have been performed. The first one is
the calculation of 2 · 107 samples divided in 3,333 tasks with fixed E size. The
experiment is repeated three times to study the sample production according to
the number of pilots provisioned. For the last one, Montera was stacked to GW-
pilot/GWcloud to perform the same calculation another three times, but using
the aforementioned limits L and M . The idea is to use the conclusions made in
first experiment to analyse the reliability added by DyTSS to the calculation, in-
dependently of the number of pilots. These experiments have been launched at
the same hour in different days. For this purpose, a desktop machine with one
i3-530 processor (2 cores, 2.93 GHz ) was used to support GWpilot and GWcloud.
The configuration parameters were identical to the ones used for the estimation
in Figure 1: an scheduling interval of 10 s (tsi/2 = 5 s) and pilot interval (tpi) of
30 s. Additionally, the GWpilot/GWcloud framework are allowed for managing a
maximum of 200 pilots (running on 200 VMs of a widely deployed marketplace
image3).

5.2 Results

Regarding how the framework behaves when Montera is not stacked, it can be
seen in Figure2 that the number of calculated samples increases as the number
of pilots do, as expected. Slopes are shown during the longer interval in which

3 https://appdb.egi.eu/store/vo/image/de355bfb-5781-5b0c-9ccd-9bd3d0d2be06



16 A. J. Rubio-Montero et al.

Figure 2 Nagano production using tasks with fixed size E of 6000 particles (without DyTSS).

the number of pilots is maintained constant in the experiment. In this sense,
a conclusion can be found if how the slope (i.e. number of calculated samples)
increases with the number of jobs is analysed. Fitting to a new linear curve the
number of pilots and the slope, it is found that the number of calculated samples
increases in a factor of ∼ 32 as the number of pilots do (this fitting presents a
correlation factor r of 0.999 and a R2 coefficient of 0.998). On the other hand,
the linear regression between the interval points where the pilots remain stable
coincides with the performance of the provisioned infrastructure using this sample
distribution (Montero et al, 2006). The heuristic of DyTSS is based on calculating
this performance for different distributions, and therefore it can be used to verify
if Montera achieves better results than a fine equal-sized choice. It is noteworthy
to mention that the type of provisioned resources varies among experiments, but
the slopes are similar when the number of pilots is maintained stable.

As can be seen in Figure 3, when Montera is stacked to GWpilot/GWcloud ,
the coupled tool outperforms the simple GWpilot/GWcloud framework in the long
term, although the latter had provisioned whole pilots previously the experiment
starts. To find this conclusion, the productivity of the experiment with fixed size
E has been estimated by calculating the slope for a number of pilots equivalent to
the real average of pilots provisioned with Montera. In the beginning, the former
experiment executes better as its lineal behaviour starts calculating samples more
quickly. During those initial hours, the stacked system presents an exponential
behaviour as the proper provision takes longer, but from one point on (around
3 hours and 45 minutes), it is able to calculate more samples. The result is that
experiments without Montera would last ∼ 8-13% more.

Figure 3 also shows the behaviour of the DyTSS algorithm. With DyTSS,
the first tasks to be executed are bigger than the last ones. This aims to reduce
the overheads during the most part of the calculation, while limiting the influ-



A simple model to exploit reliable algorithms in cloud federations 17

Figure 3 Nagano production with DyTSS algorithm.

ence of failed tasks close to the end. However, this fact apparently decreases the
productivity (measured as number of successfully completed samples) at the begin-
ning, because it takes quite a long time until these larger tasks start returning the
first results. . The only way to describe this issue is drawing the sample production
as the system were working with a task size between L and M , for example E.
As the number of pilots and their benchmark average have been monitored every
minute, the turnaround model can be used for this purpose. Thus, in Figure 3 it
is also depicted the proposed mathematical model (red line). Using this reference
it can be seen that DyTSS works first under that line and then above it. Further-
more, it clearly demonstrates that the proposed model fits the real execution of
the pilots in a real cloud infrastructure as FedCloud is. This fact is key to foresee
the behaviour of a cloud infrastructure for scheduling and provisioning resources
in advance.

6 Conclusions

To increase the computational efficiency in distributed computing infrastructures,
a new model has been presented. It can be used to properly exploit the heterogen-
eity and the real availability of resources belonging to multiple cloud providers.
For this purpose, the model has been included in the GWpilot framework that
has extended its capabilities to cloud environments. Unlike other pilot systems,
the proposed framework is capable of supporting diverse scheduling algorithms,
even provided by third-party tools. This is so because the personalised character-
isation that those algorithms require is possible, a fact that overcomes their lack
of trustworthiness in the information provided by cloud services. The suitability



18 A. J. Rubio-Montero et al.

of the approach has been demonstrated with a legacy self-scheduler (Montera)
specialised on performing reliable MC executions on distributed resources based
on heuristics, which has been stacked and tested on the EGI FedCloud infrastruc-
ture with the Nagano legacy application. First results on this cloud infrastructure,
which is in production status, demonstrate that the cloud system presents a linear
behaviour of calculated samples with the average number of pilots provisioned. Ad-
ditional tests have also compared how the framework behaves with and without
the Montera self-scheduler stacked. The analysis demonstrates that the former
system improves the performance of the latter one due to its better fitting of the
real characteristics of cloud resources. In this sense, the model proposed in this
work perfectly matches the real production of the legacy self-scheduler when has
been stacked onto the pilot system. The overhead produced with respect to the
expected turnaround has been analysed as well.

Compliance with Ethical Standards

Funding: this work was supported by the COST Actions BETTY (IC 1201) and
NESUS (IC1305) and partially funded by the Spanish Ministry of Economy and
Competitiveness project CODEC2 (TIN2015-63562-R).

Conflict of Interest: authors declare that they have no conflict of interest.

Ethical Approval: this article does not contain any studies with human parti-
cipants or animals performed by any of the authors.

References

Abdullah M, Othman M (2013) Cost-based Multi-QoS Job Scheduling Using Di-
visible Load Theory in Cloud Computing. In: International Conference on Com-
putational Science (ICCS 2013), Elsevier, Barcelona, Spain, Procedia Computer
Science, vol 18, pp 928–935, DOI 10.1016/j.procs.2013.05.258

Aceto G, Botta A, de Donato W, Pescapè A (2013) Cloud monitoring: A survey .
Computer Networks 57(9):2093–2115, DOI 10.1016/j.comnet.2013.04.001

Anastasi GF, Carlini E, Coppola M, Dazzi P (2014) BROKAGE: A Genetic
Approach for QoS Cloud Brokering. In: 7th IEEE International Conference
on Cloud Computing (IEEE CLOUD 2014), Alaska. USA, pp 304–311, DOI
10.1109/CLOUD.2014.49

Andreozzi S, Burke S, Ehm F, Field L, Galang G, Konya B, Lit-
maath M, Millar P, Navarro JP (2009) GLUE Specification v. 2.0. URL
http://www.ogf.org/documents/GFD.147.pdf, GFD 147

Babu D, Venkata P (2013) Honey bee behavior inspired load balancing of tasks
in cloud computing environments. Applied Soft Computing 13(5):2292 – 2303,
DOI 10.1016/j.asoc.2013.01.025

Bala A, Chana I (2015) Autonomic fault tolerant scheduling approach for sci-
entific workflows in Cloud computing. Concurrent Engineering 23(1):27–39,
DOI 10.1177/1063293X14567783

Camarasu-Pop S, Glatard T, da Silva RF, Gueth P, Sarrut D, Benoit-Cattin H
(2013) Monte Carlo simulation on heterogeneous distributed systems: A com-



A simple model to exploit reliable algorithms in cloud federations 19

puting framework with parallel merging and checkpointing strategies. Future
Generation Computer Systems 29(3):728–738, DOI 10.1016/j.future.2012.09.003

Chiu CF, Hsu S, Jan SR, Chen JA (2014) Task scheduling based on load approx-
imation in cloud computing environment. In: Future Information Technology,
Lecture Notes in Electrical Engineering, vol 309, Springer Berlin Heidelberg, pp
803–808, DOI 10.1007/978-3-642-55038-6 122

Ciuffoletti A (2014) A Simple and Generic Interface for a Cloud Monitoring Ser-
vice. In: CLOSER 2014 Proceedings of the 4th International Conference on
Cloud Computing and Services Science, SCITEPRESS – Science and Techno-
logy Publications, Barcelona, Spain, pp 143–150

Curnow HJ, Wichmann BA (1976) A synthetic benchmark. The Computer Journal
19(1):43–49, DOI 10.1093/comjnl/19.1.43

Dı́az J, Reyes S, no AN, noz Caro CM (2009) Derivation of self-scheduling
algorithms for heterogeneous distributed computer systems: Application to
internet-based grids of computers. Future Generation Computer Systems
25(6):617–626, DOI 10.1016/j.future.2008.12.003

Foster I, Zhao Y, I Raicu I, Lu S (2008) Cloud Computing and Grid Computing
360-Degree Compared. In: Grid Computing Environments Workshop (GCE ’08),
IEEE, Austin, TX, USA., pp 1 – 10, DOI 10.1109/GCE.2008.4738445

Garey M, Johnson D (1979) Computers and Intractibility: A guide to the Theory
of NP-completeness. W. H. Freeman&Co, New York

Glatard T, Camarasu-Pop S (2011) A model of pilot-job resource provi-
sioning on production grids. Parallel Computing 37(10–11):684–692, DOI
10.1016/j.parco.2011.04.001

Gómez-Iglesias A, Vega-Rodŕıguez MA, Castejón F, Morales-Ramos E, Cárdenas-
Montes M, Reynolds JM (2010) Grid-based metaheuristics to improve a nuclear
fusion device. Concurrency Computat: Pract Exper 22(11):1476–1493, DOI
10.1002/cpe.1497

Graciani R, Casajús A, Carmona A, Fifield T, Sevior M (2011) Belle-DIRAC
Setup for Using Amazon Elastic Compute Cloud. Journal of Grid Computing
9(1):65–79, DOI 10.1007/s10723-010-9175-7

Grozev N, Buyya R (2014) Inter-Cloud architectures and application brokering:
taxonomy and survey. Softw: Pract Exper 44:369–390, DOI 10.1002/spe.2168

Herrera J (2009) Programming Model for Grid Computing Infrastructures. (in
Spanish). PhD thesis, Universidad Complutense de Madrid, Madrid, Spain

Huedo E, Montero RS, Llorente IM (2007) A modular meta-scheduling architecture
for interfacing with pre-WS and WS Grid resource management services. Future
Generation Computer Systems 23(2):252–261 DOI 10.1016/j.future.2006.07.013

Korkhov VV, Mościcki JT, Krzhizhanovskaya VV (2009) Dynamic workload bal-
ancing of parallel applications with user-level scheduling on the Grid. Future
Generation Computer Systems 25(1):28–34, DOI 10.1016/j.future.2008.07.001

Kovács J, Marosi AC, Visegrádi A, Farkas Z, Kacsuk P, Lovas R (2015) Boosting
gLite with cloud augmented volunteer computing. Future Generation Computer
Systems 43–44:12–23 DOI 10.1016/j.future.2014.10.005

Lu K, Yahyapour R, Wieder P, Yaqub E, Abdullah M, Schloer B, Kotsokalis C
(2016) Fault-tolerant service level agreement lifecycle management in clouds
using actor system. Future Generation Computer Systems 54: 247–259 DOI
10.1016/j.future.2015.03.016



20 A. J. Rubio-Montero et al.

Lucas-Simarro JL, Moreno-Vozmediano R, Montero RS, Llorente IM (2015) Cost
optimization of virtual infrastructures in dynamic multi-cloud scenarios. Con-
currency Computat: Pract Exper 27(9):2260–2277, DOI 10.1002/cpe.2972

Luckow A, Santcroos M, Merzky A, Weidner O, Mantha P, Jha S (2012) P*: A
model of pilot-abstractions. In: 8th IEEE International Conference on E-Science
(e-Science 2012), Chicago, USA, pp 1–10, DOI 10.1109/eScience.2012.6404423

Luckow A, Santcroos M, Zebrowski A, Jha S (2015) Pilot-Data: An abstraction
for distributed data. Journal of Parallel and Distributed Computing 7980:16–30,
DOI 10.1016/j.jpdc.2014.09.009

Mhashilkar P, Tiradani A, Holzman B, Larson K, Sfiligoi I, Rynge M (2014)
Cloud Bursting with GlideinWMS: Means to satisfy ever increasing comput-
ing needs for Scientific Workflows. In: 20th International Conference on Com-
puting in High Energy and Nuclear Physics (CHEP2013), IOP Publishing,
Journal of Physics: Conference Series, vol 513, p 032069, DOI 10.1088/1742-
6596/513/3/032069

Mohamed M, Amziani M, Beläıd D, Tata S, Melliti T (2015) An autonomic ap-
proach to manage elasticity of business processes in the cloud. Future Generation
Computer Systems 50:49 – 61, DOI 10.1016/j.future.2014.10.017

Montero R, Huedo E, Llorente I (2006) Benchmarking of high throughput
computing applications on Grids. Parallel Computing 32(4):267–279, DOI
10.1016/j.parco.2005.12.001

Moon YH, Youn CH (2015) Multihybrid job scheduling for fault-tolerant distrib-
uted computing in policy-constrained resource networks. Computer Networks
82:81 – 95, DOI 10.1016/j.comnet.2015.02.030

Moreno-Vozmediano R, Montero RS, Llorente IM (2012) IaaS Cloud Architecture:
From Virtualized Datacenters to Federated Cloud Infrastructures. Computer
45(12):65–72, DOI 10.1109/MC.2012.76

Mościcki JT (2011) Understanding and Mastering Dynamics in Computing Grids:
Processing Moldable Tasks with User-Level Overlay. PhD thesis, Universiteit
van Amsterdam, Nederlands

Mościcki JT, Lamannaa M, Bubak M, Sloot PMA (2011) Processing moldable
tasks on the Grid: Late job binding with lightweight user-level overlay. Future
Generation Computer Systems 27(6):725–736, DOI 10.1016/j.future.2011.02.002

Nagano M, Kobayakawa K, Sakaki N, Ando K (2003) Photon yields from nitrogen
gas and dry air excited by electrons. Astroparticle Physics 20(3):293 – 309,
DOI 10.1016/S0927-6505(03)00192-0

Nagano M, Kobayakawa K, Sakaki N, Ando K (2004) New measurement
on photon yields from air and the application to the energy estima-
tion of primary cosmic rays. Astroparticle Physics 22(3–4):235 –248, DOI
10.1016/j.astropartphys.2004.08.002

Nesmachnow S, Cancela H, Alba E (2010) Heterogeneous computing schedul-
ing with evolutionary algorithms. Soft Computing 15(4):685–701, DOI
10.1007/s00500-010-0594-y

Panda SK, Gupta I, Jana PK (2015) Allocation-aware Task Scheduling for Hetero-
geneous Multi-cloud Systems. In: 2nd International Symposium on Big Data and
Cloud Computing Challenges (ISBCC ’15), Chennai, India, Procedia Computer
Science, vol 50, pp 176 – 184, DOI 10.1016/j.procs.2015.04.081

Parák B, Šustr Z, Feldhaus F, Kasprzakc P, Srbac M (2014) The rOCCI Project:
Providing Cloud Interoperability with OCCI 1.1. In: International Symposium



A simple model to exploit reliable algorithms in cloud federations 21

on Grids and Clouds (ISGC), Taipei, Taiwan, SISA PoS, pp 1–15
Pinedo M (2005) Planning and Scheduling in Manufacturing and Services. Springer

Series in Operations Research, Springer, New York, DOI 10.1007/b139030
Sajid M, Razaa Z (2015) Turnaround Time Minimization-Based Static Schedul-

ing Model Using Task Duplication for Fine-Grained Parallel Applica-
tions onto Hybrid Cloud Environment. IETE Journal of Research DOI
10.1080/03772063.2015.1075911, In press. Available Online.

Rodŕıguez-Pascual M, Mayo-Garćıa R, Llorente IM (2013) Montera: a framework
for efficient execution of Monte Carlo codes on grid infrastructures. Computing
and Informatics 32(1):113–144

Rubio-Montero AJ, Castejón F, Huedo E, Mayo-Garćıa R (2015a) A novel pilot
job approach for improving the execution of distributed codes: application to
the study of ordering in collisional transport in fusion plasmas. Concurrency
Computat: Pract Exper 27(13):3220–3244, DOI 10.1002/cpe.3301

Rubio-Montero AJ, Huedo E, Castejón F, Mayo-Garćıa R (2015b) GWpi-
lot: Enabling multi-level scheduling in distributed infrastructures with Grid-
Way and pilot jobs. Future Generation Computer Systems 45:25–52, DOI
10.1016/j.future.2014.10.003

Rubio-Montero AJ, Huedo E, Mayo-Garćıa R (2015c) User-guided provisioning
in federated clouds for distributed calculations. In: Workshop on Adaptive Re-
source Management and Scheduling for Cloud Computing (ARMS-CC 2015),
San Sebastián, Spain, Lecture Notes in Computer Science, vol. 9438, pp 60–77,
DOI 10.1007/978-3-319-28448-4 5

Rubio-Montero AJ, Rodŕıguez-Pascual MA, Mayo-Garćıa R (2015d) Evalu-
ation of an adaptive framework for resilient Monte Carlo executions. In:
30th ACM/SIGAPP Symposium On Applied Computing (SAC’15), Salamanca,
Spain, pp 448–455, DOI 10.1145/2695664.2695890

Saleh A (2013) An efficient grid-scheduling strategy based on a fuzzy matchmaking
approach. Soft Computing 17(3):467–487, DOI 10.1007/s00500-012-0920-7

Sheikhalishahi M, Wallace R, Grandinetti L, Vázquez-Poletti JL, Guerriero F
(2015) A multi-dimensional job scheduling. Future Generation Computer Sys-
tems DOI 10.1016/j.future.2015.03.014, Available Online.

Shie MR, Liu CY, Lee YF, Lin YC, Lai KC (2014) Distributed Scheduling Ap-
proach Based on Game Theory in the Federated Cloud. In: International Con-
ference on Information Science and Applications (ICISA 2014), IEEE CS Press,
Seoul, South Corea, pp 1–4, DOI 10.1109/ICISA.2014.6847388

Smanchat S, Viriyapant K (2015) Taxonomies of workflow scheduling problem and
techniques in the cloud. Future Generation Computer Systems 52:1–12, DOI
10.1016/j.future.2015.04.019

Snyder B, Ringenberg J, Green R, Devabhaktuni V, Alam M (2015) Evaluation
and design of highly reliable and highly utilized cloud computing systems.
Journal of Cloud Computing: Advances, Systems and Applications 4(11):1–16,
DOI 10.1186/s13677-015-0036-6

Tao F, Feng Y, Zhang L, Liao T (2014) Clps-ga: A case library and pareto solution-
based hybrid genetic algorithm for energy-aware cloud service scheduling. Ap-
plied Soft Computing 19:264 – 279, DOI 10.1016/j.asoc.2014.01.036

Tomás L, Caminero AC, Rana O, Carrión C, Caminero B (2012) A GridWay-
based autonomic network-aware metascheduler. Future Generation Computer
Systems 28(7):1058–1069, DOI 10.1016/j.future.2011.08.019



22 A. J. Rubio-Montero et al.

Tordsson J, Montero RS, Moreno-Vozmediano R, Llorente IM (2012) Cloud
brokering mechanisms for optimized placement of virtual machines across mul-
tiple providers. Future Generation Computer Systems 28(2):358–367, DOI
10.1016/j.future.2011.07.003

Tzen TH, Ni LM (1993) Trapezoid self-scheduling: a practical scheduling scheme
for parallel compilers. IEEE Transactions on Parallel and Distributed Systems
4(1), DOI 10.1109/71.205655

Vélez JR (2011) Analysis of the air fluorescence induced by electrons for applica-
tion to cosmic ray detection. PhD thesis, Universidad Complutense de Madrid,
Madrid, Spain

Wang X, Wang Y, Cui Y (2016) An energy-aware bi-level optimization model
for multi-job scheduling problems under cloud computing. Soft Computing
20(1):303–317, DOI 10.1007/s00500-014-1506-3

Xu B, Peng Z, Xiao F, Gates A, Yu JP (2015) Dynamic deployment of virtual ma-
chines in cloud computing using multi-objective optimization. Soft Computing
19(8):2265–2273, DOI 10.1007/s00500-014-1406-6

Yangui S, Marshall IJ, Laisne JP, Tata S (2014) CompatibleOne: The Open Source
Cloud Broker. J Grid Computing 12(1):93–109, DOI 10.1007/s10723-013-9285-0

Zanikolas S, Sakellariou R (2005) A taxonomy of grid monitoring systems. Future
Generation Computer Systems 21(1):163–188, DOI 10.1016/j.future.2004.07.002

Zhani M, Boutaba R (2015) Survivability and Fault Tolerance in the Cloud, John
Wiley & Sons, Inc., pp 295–308. DOI 10.1002/9781119042655.ch12


